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Abstract

Associative learning is an essential feature of human cognition, accounting for the influence of

priming and interference effects on memory recall. Here, we extend our account of associative

learning that learns asymmetric item-to-item associations over time via experience (Thomson,

Pyke, Trafton, & Hiatt, 2015) by including link maturation to balance associations between

longer-term stability while still accounting for short-term variability. This account, combined with

an existing account of activation strengthening and decay, predicts both human response times and

error rates for the fan effect (Anderson, 1974; Anderson & Reder, 1999) for both target and foil

stimuli.
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1. Introduction

Associative learning is an essential component of human cognition, thought to be part

of many mental phenomena such as classical conditioning (e.g., Rescorla & Wagner,

1972) and memory recall (e.g., Kahana, 1996; Klein, Addis, & Kahana, 2005). Despite
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its ubiquity, it is difficult to model directly due to its entangled ties to other aspects of

cognition (e.g., memory decay).

Perhaps associative learning’s most studied effect is that of priming (and its converse

interference; e.g., Stanovich & West, 1983; Hiatt & Trafton, 2013). Priming occurs when

the retrieval of one memory facilitates the retrieval of another. Conversely, interference

occurs when a memory primes multiple other memories instead of just the ones that are

useful or relevant to the current situation. Those other memories are said to interfere with

the useful one (MacLeod, 1991). When there is high interference, recognition accuracies

are relatively lower and recognition response times relatively longer when compared to

situations where there is low interference, ostensibly due to having lower overall activa-

tion in memory. Assuming that the degree of interference is positively correlated with the

number of competing associations, then having more competing associations (i.e., a

higher fan) will lead to relatively higher error rates and latencies than memories having

relatively fewer competing associations. This effect is most popularly known as the fan
effect (Anderson, 1974).

In this paper, we will extend our account of associative memory embodied in a cogni-

tive architecture (Thomson, Bennati, & Lebiere, 2014) to explain interference in the fan

effect experiment. This theory of associative memory has already successfully predicted

the complicated results of a multi-trial free and serial recall task, including asymmetric

contiguity effects that strengthen over time (Klein et al., 2005; Thomson et al., 2015).

We include link maturation to balance associations between longer-term stability while

still accounting for shorter-term variability. We then use the theory as part of a cognitive

model that performs the fan effect experiment, using the same stimuli and presentation

times as the human participants.

By doing this, we propose the first theory of associative memory to explain how asso-

ciations are learned and updated throughout the fan effect experiment that capture the

results on both target and foil trials. Previous models considered only associations at the

end of the experiment (Anderson, 1974; Anderson & Reder, 1999; Rutledge-Taylor &

West, 2008; Schneider & Anderson, 2012), but our model extends their description of

associative memory by describing the process of how these end-state association strengths

are learned.

2. Associative learning in memory recall

Our account of associative learning is situated in the cognitive architecture ACT-R/E

(adaptive character of thought-rational/embodied; Trafton et al., 2013), a version of the

ACT-R cognitive architecture (Anderson et al., 2004) written in Java with added func-

tionality to be embodied in robotics platforms. ACT-R is an integrated theory of human

cognition in which a “production system operates on a declarative memory” (Anderson,

Bothell, Lebiere, & Matessa, 1998). In ACT-R, recall and latency depend on three main

components: activation strengthening, activation noise, and associative activation. These

three values are summed together to represent an item’s total activation. When a recall is
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requested, the item with the highest total activation is retrieved, subject to a retrieval

threshold; if no item’s activation is above the threshold, the retrieval is said to fail and
no item is recalled. The latency of the recall is also inversely correlated to the recalled

item’s activation.

2.1. Activation strengthening

Adaptive character of thought-rational’s well-established theory of activation strength-

ening (also called base-level activation) has been shown to be a very good predictor of

human memory recall (Anderson, 2007; Anderson et al., 1998). Intuitively, activation

strengthening depends on how frequently and recently a memory has been relevant in the

past, and it is calculated as follows:

Bi ¼ ln
Xn
j¼1

t�d
j

 !
; ð1Þ

where n is the number of times an element i has been accessed in the past, tj is the time

that has passed since the jth access, and d is the learning parameter, specifying an ele-

ment’s rate of decay. Importantly, this equation predicts that items that have occurred

recently, or have been rehearsed more, are more likely to be recalled than those that have

not.

2.2. Associative activation

In our account, associative strengths are learned, strengthened, and weakened over time

as new elements are learned or prior elements re-experienced. These associations are

learned between relevant working memory items within temporal proximity to one

another, leading from earlier to later items (Thomson & Lebiere, 2013a, 2013b; Thomson,

Bennati, & Lebiere, 2014). The strength of the learned association (or how strongly an

existing association is increased) is influenced by the amount of time that passes between

when the items were each in working memory. If one item is immediately followed by

another in working memory, they will become very strongly associated; on the other

hand, if an item has been out of working memory for a while before another is added,

they will be only weakly associated. Additionally, associations are asymmetric; an associ-

ation can be stronger from an item i to an item j, for example, than the association from

item j to item i (or, there could be no association from item j to item i at all).
To balance the rate of associative learning between long-term stability and short-term

variability, we propose a link maturation parameter. Associative link maturation slows

the rate of strengthening and weakening based on the number of times the link has been

used. This supports long-term stability of well-experienced associative links while allow-

ing for rapid short-term learning of new associative elements. In neural networks, matura-

tion is equivalent to the process of settling to reach a stable equilibrium (Eliasmith, 2005;
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Wills, Cacucci, Burgess, & O’Keefe, 2005). Maturation is set using a logistic function:

M ¼ 1� 1

1þ e�ðln timesInContextð Þ�MaturationRateÞ ð2Þ

The maturation rate controls the steepness of the curve, or, in other words, controls how

quickly links will stabilize.

To compute associative strength from an item j to an item i, the learning mechanism

computes an increment Iji:

Iji ¼ lr � w�M; ð3Þ
where lr is a learning rate parameter, w is the weight of the increment determined by the

strength of the items in working memory (scales from 0 to 1), and M is maturation. This

increment is used to update link strength as follows:

Sji ¼ SjiPrior � 1� Iji
� �þ ðIji � SÞ; ð4Þ

where Sji is the strength of the link from j to i, SjiPrior is the prior strength of Sji, Iji is the
learning increment from above, and S is a parameter controlling the maximum possible

associative strength.

When a new link is learned or existing link updated that shares a source j with other

existing links, then each of those other links are discounted proportionally to the weight
that the original link is updated (e.g., Sji is updated so Sjk is discounted):

Sjk ¼ SjkPrior � 1� Ijk
� �

; ð5Þ

where Ijk is computed using the weight from the link from j to i, but using the maturation

M from the link from j to k. Equation 5 normalizes the amount link j to k is discounted

based on the degree to which it has settled. This allows for newer links to rapidly change

while providing for long-term stability for more mature links.

This discounting function attenuates link strengths consistent with interference accounts

of memory. As more concepts compete in memory, the amount of associative strength

from each concept is reduced. In a balanced environment, this discounting will approxi-

mate the statistical likelihood P(i/j), which is the odds of perceiving or retrieving i imme-

diately prior to j.
Armed with an understanding of our modeling framework, we now turn to the fan

effect experiment itself.

3. The fan effect experiment

To understand the fan effect, we consider the Anderson and Reder (1999) classical fan

experiment. They capture the fan effect in a recognition task where participants begin by
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learning 48 pairs of persons and places. Persons and places could appear in multiple

pairs, and each pair was shown for 5,000 ms. Then, during testing, participants respond

yes (target) or no (foil) to whether presented statements were previously studied: The

person is in the place (e.g., “the hippie is in the park”). In the testing phase, participants

were provided a monetary reward based on their total score. The score was computed by

providing one point for each correct response, plus an additional point for each 100 ms

of response times faster than 1,500 ms. This induced a speed-accuracy trade-off into the

experiment.

The experiment proceeded according to three phases: a study phase, drop-out training,

and then a testing phase. In the study phase, each stimulus pair was presented once on the

screen for 5,000 ms. In the drop-out training phase, participants were presented with a series

of questions from each person and place concept of the type “Who is in the location?” and
“Where is the person?” For each question, participants were instructed to respond with all

persons associated with the queried location (or vice versa). If they were successful in

recalling the requested persons or locations, the current question was dropped from the ser-

ies and they moved onto the next question. If not, they were presented with the stimulus

pairs from the study phase matching the question (i.e., the set of stimulus pairs for the given

place or location). The question was then repeated and participants continued this cycle of

question and study until they could successfully recall all the persons in the given location

(or vice versa), and thus have that question dropped from the series. Once all questions in

the series were correctly answered once, participants went through the series of questions a

second time according to the same procedure. After successfully completing the second ser-

ies of questions, participants moved onto the testing phase. Finally, in the testing phase, par-

ticipants would respond yes or no to queries “the person was in the location” with

participants receiving feedback on their response.

The experiment manipulated the test stimuli in two different ways. The first was to

manipulate the fan of the persons and places. In this experiment, fan is the number of

persons associated with a place, and vice versa. Fan is controlled by varying the number

of persons in each place, or the number of places with each person (e.g., “the hippie is in

the bank” or “the soldier is in the park”). Here, the fan of one concept (person/place)

was fixed at 2, while the fan of the other concept (place/person, respectively) was varied

to be either 2 (low-fan) or 4 (high-fan).

The second manipulation was to control the composition of the set of test stimuli

shown to participants by manipulating different target and foil conditions. There were

four target conditions: facilitation, interference, suppression, and control. In the facilita-

tion condition, each target (e.g., “the biker is the tower”) was “facilitated” by being

repeated five times each in the stimulus set. In the interference condition, each target was

repeated only once in the stimulus set and was considered interference because the

target’s person or place overlapped with a target from the facilitation condition (i.e., “the

biker is in the factory,” or “the doctor is in the tower”).
The other two conditions were the suppression and control conditions. In these condi-

tions, each target appeared once in the stimulus set and consisted of concepts that were

seen in the interference (but not facilitation) condition, such as factory and doctor in the

R. Thomson et al. / Topics in Cognitive Science 9 (2017) 73



above examples. Examples of suppression targets included “the writer is in the factory,”
and “the doctor is in the bank.” Due to a particularity in the original study, there is lim-

ited difference between suppression and control stimuli, because the controls were

designed such that they would functionally suppress stimuli from the suppression condi-

tion (e.g., “the monk is in the bank”). They are different insofar as the suppression stimuli

were effectively two steps removed from the facilitation condition, while the control trials

were effectively three steps removed.

Foils were classified according to three conditions: high-frequency foils, which used per-

son/place concepts from the facilitation condition but with novel pairings, and were repeated

four times each in the stimulus set; low-frequency foils, which had novel pairings of person/

place concepts from the interference, suppression, or control conditions and appeared once

each in the stimulus set; and mixed foils, which created novel pairings, using one high-fre-

quency concept from the facilitation condition and one low-frequency concept from the

interference, suppression, or control conditions and were repeated only once in the stimulus

set. In total, there were 48 target sentences and 54 foil sentences in the stimulus set.

The test stimulus set was presented three times in successive blocks, and all stimuli

were presented in each block. Feedback was provided for 1,000 ms after participants’

responses, with an additional 1,000 ms inter-trial interval.

The results of the Anderson and Reder (1999) study were consistent with interference

effects: There were longer latencies and more errors in the high-fan (i.e., fan of 4) condi-

tions relative to the low-fan (i.e., fan of 2) conditions for both targets and foils, with both

high-frequency (i.e., facilitation) targets and foils having relatively higher accuracy and

quicker latencies than their corresponding low-frequency counterparts. They also pre-

dicted lower relative accuracy in the interference condition relative to the suppression

and control conditions, and no difference between suppression and control.

3.1. Prior models of the fan effect

There have been several mathematical models of fan effects (Anderson, 1974; Anderson

& Reder, 1999; Rutledge-Taylor & West, 2008). Most prominent is Anderson and Reder’s

(1999) model whose equations were grounded in the ACT-R cognitive architecture (Ander-

son & Lebiere, 1998). This model can be broken down into three related equations.

Sji ¼ Sþ lnð1=fanjÞ ð6aÞ
Sji ¼ Sþ ln P i=jð Þð Þ ð6bÞ

Ai ¼ Bi þ
X
j

WjSji ð7Þ

T ¼ I þ Fe�Ai ð8Þ
Equation 6a describes the spread of activation (Sji) from element j to i as a function of

associative strength intercept S attenuated by the fan of j, which is the number of concepts
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to which j is associated. In Eq. 6b, P(i/j) is the frequency-adjusted form of 1/fanj, which is

a simplification assuming that there were equal frequencies of i and j. In Anderson and

Reder (1999), frequencies were not equal, and were instead set ahead of time according to

the objective probabilities of perceiving the stimuli in the training phase. Equation 7

relates an activation function Ai to the base-level activation from Eq. 1, and the sum of

spreading activation from Eq. 7 multiplied by an attentional weigh Wj. Prior efforts set Bi

to 0 on the assumption that the drop-out testing would balance out base-level activation

between stimuli. Finally, Eq. 8 computes retrieval time T based on an intercept I, time

scale offset F, and the activation function Ai from Eq. 3. The estimates for each parameter

were as follows: I was 1,197 ms, F was 773 ms, S was 2.5 ms, and W was .33 (reflecting

an even weighting of “person” “in” “place”). Using these parameters, Anderson and Reder

report a strong correlation with response times, r = .956. This model did not attempt to fit

error patterns, although the dynamics of ACT-R (that response time is solely related to

activation strength) imply that their model could theoretically fit the end-state human error

pattern data with the appropriate retrieval threshold.

Our model will address the assumption that the recency and frequency of all stimuli

will be equated across conditions by the end of the experiment. For instance, Anderson

and Reder’s (1999) use of objective statistics for i and j for each target condition in

Eq. 6b was based on stimulus pair presentation in the study phase, with the assumption

made that the number of presentations per condition during drop-out training and testing

would be roughly equivalent. This may not be necessarily the case, as the high-fan condi-

tions would have lower activation (thus be more prone to error). This means that they

would not all be recalled with equal probability and would need to be rehearsed more

often. Their assertion also does not necessarily account for the recall of incorrect pairs

(i.e., pairs that were not studied) due to intrusion and confusion of recently studied con-

cepts. Now, considering that Anderson and Reder did not attempt to model error rates,

our concerns are not a criticism of their model but instead are an attempt to extend their

theory and reconcile their assumption, using an updated account of associative memory.

Our approach is grounded within the ACT-R/E cognitive architecture along with the con-

straints it places on cognition (Trafton et al., 2013), using a production system simulating the

time course of perception, encoding, retrieval, and response. Once base-level activation is

included as a factor, then the time course of stimulus presentation and training becomes

important in determining overall accuracy and response time. This added fidelity (and com-

plexity) may test assumptions made in prior modeling efforts, and also may provide new

insights or hypotheses about how participants learn the task. To that end, our model performs

the experiment analogously to participants and learns associations over time. This supports

our theory of associative memory explaining how associations are learned and adapt.

4. Learning the fan effect

The model starts with the assumption that all concepts used in the experiment have

been encoded in the past with equal frequency1 and that the model is equipped with the
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procedural knowledge necessary to perform the experiment. It has no underlying knowl-

edge of the concepts of person and place, and thus has no knowledge of targets or foils.

As we have said, the model is presented with the same experimental paradigm as the

human participants.

The model uses the same procedural knowledge at the start of each phase to perceive

the person and place concepts: When it attends to two concepts on the screen together,

then they are encoded as a single concept-pair, with each constituent person and place

priming the concept-pair. This concept-pair is represented in memory as a single chunk

of information containing three features: person, place, and was-target. The Was-target is

a binary true/false decision, where true indicates that the stimulus was a target and false
indicates that the stimulus was a foil.

The external environment is a simulated computer screen. When attending to stimuli,

the model randomly attends to one symbol first and then the other, encoding the whole as

a single concept-pair. As task instructions do not specify an encoding strategy, we

decided that—due to the short size of the sentence—the entire sentence (i.e., concept-

pair) should be encoded holistically. The model categorizes these symbols according to

two features: person-symbols and place-symbols. These representations are functionally

identical and are distinguished only for lexical purposes to simply categorize incoming

words. Since stimuli are of the form “the person is in the place” we present person-sym-

bols on the left of the display and place-symbols on the right of the display.

When a concept-pair is learned or updated, then the associative strengths between the

person/place concepts and the pair are strengthened while the strengths between the con-

cepts and their other related concept-pairs are weakened. Since concepts are related to

more concept-pairs on high-fan trials than on low-fan trials, high-fan concepts tend to

have lower associative strengths to their related concept-pairs than low-fan concepts. This

lower associative strength predicts that concept-pairs involving high-fan concepts will

have slower response latencies and increased error rates. Also, since high-frequency stim-

uli have been seen more often, their strengths will be stronger than low-frequency stimuli;

however, maturation controls the degree to which these stimuli increase in strength (e.g.,

a link seen 4 times as often is not 4 times as strong).

In the study phase, the model automatically encodes all concept-pairs as targets. After

encoding the stimuli and generating a concept-pair representation, the model then repeats

this encoding until the stimuli are no longer presented on the display, averaging 2–3
rehearsals over the 5,000 ms presentation time.

In the drop-out training phase, the model goes through the same two-round drop-out

testing as the participants. For each stimulus in the set, the system displays either a per-
son or place reflecting the question “Where is the person?” and “Who is at the location?”
respectively. The model then attempts to retrieve all places where that person is (or all

persons in that place). If the model correctly perceives all required places or persons,
then the model moves onto the next stimulus in the set; otherwise it studies those stimuli

again (by re-running those trials in the study phase) and returns to the drop-out training

to be asked the same query again. Once the model has successfully retrieved all elements

in both run-throughs of the drop-out training phase, the test phase begins.

76 R. Thomson et al. / Topics in Cognitive Science 9 (2017)



The test phase is where all response times and error rates were recorded. Similar to the

study phase, the model encodes the concept-pair for person and place from the display as

an analogue to perceiving: Was person in the place? The model then attempts to retrieve

any concept-pair containing said person and/or place. We consider the model’s decision

to be the value of the was-target slot in the retrieved chunk. A response is then generated

according to the following criteria: (a) if the model is unable to retrieve any concept-pair

due to all pairs being below threshold, then it responds foil; (b) if the model correctly

retrieves the matching person and place, then it examines the was-target decision and

responds with the respective decision: target for true and foil for false; or (c) if the model

retrieves a mismatching concept-pair containing one correct person or place but not both,

then it assumes that the response is a target. After the model responds it receives feed-

back from the display, which it uses to encode the correct concept-pair. This includes

encoding foils, which allows the model to be capable of correctly retrieving that an item

was a foil seen in an earlier testing phase. This is a unique behavior of our model and

reflects the fact that participants cannot “ignore” decisions they have made and must

encode feedback that they have seen. Finally, if the model was incorrect or had retrieved

a mismatched element, then for the feedback period it rehearses the correct response. This

process is repeated across all trials through all three test phases.

In the testing phase, response times are recorded from the stimulus onset time until the

model has responded with the appropriate decision (target or foil). It is important to note

that as a fully implemented production system model, the complete time to respond includes

two relatively fixed durations: approximately 600 ms to encode the stimuli from the dis-

play, and approximately 350 ms to prime the motor command and press the response key.

This is in a similar range to the structural offset I of 1,197 ms that Anderson and Reder

(1999) used in Eq. 9. This means that fan effects in latencies occur mainly in the approxi-

mately 200–800 ms timeframe where the concept-pairs are retrieved. It is the retrieval of

the concept-pair that determines fan effects in both latencies and accuracy.

One final difference between the present model and prior efforts is that our model

incorporates base-level activation Bi (see Eq. 8) but replaces the Sji from Eq. 7 with our

learned Sji from Eq. 5. As previously mentioned, base level activation reflects the recency

and frequency of use of elements, and it is not a given that base level would be equiva-

lent for items across the different target and foil conditions, especially for the high-fre-

quency versus low-frequency elements where frequency is necessarily varied.

4.1. Results

The present model was run for 200 iterations with the parameters described in Table 1.

As is apparent from Figs. 1 and 2, the model captured fan effects in both accuracy and

latency, respectively, reflected by slower response times and higher error rates for high-

fan concepts compared to low-fan concepts. Similar to human performance, we predicted

relatively higher accuracy for high-frequency conditions (facilitation for targets and high-

frequency for foils) compared to the rest of the conditions; lower accuracy in the interfer-

ence condition relative to the control and suppression conditions, and no difference
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between suppression and control target conditions. One difference is that we predict a

smaller average fan (.03 s instead of .09 s) than did Anderson and Reder (1999).

Overall, our model fits closely to track human performance, deviating more in the

high-frequency conditions. Our model substantially predicted human performance in accu-

racy (R2 = .75) and latency (R2 = .38). Our fits are depressed by the relatively higher

accuracy and quicker response times in the high-frequency condition. Excluding this con-

dition (which still predicted fan effects), our latency fit significantly improves (R2 = .75).

It is important to note that our fits are lower than those of Anderson and Reder (1999);

however, our model simulates nearly 2 hours of task performance with learning through-

out and captures both accuracy and response times.

Interestingly, the source of errors is different between targets and foils. Target errors

are due to failures in retrieving any concept-pairs, whereas foil errors are due to confus-

ing foils with previously seen similar stimuli.

4.2. Discussion and conclusions

The present model describes the emergence of fan effects in both accuracy and latency,

using a theory of associative memory including an account of interference by discounting

Table 1

Parameters used in fan effect experiment

Parameter Value

Base-level learning (Bi) 0.4

Learning rate (lr) 1.1

Maturation rate (M) 0.5

Maximum associative strength (S) 7.25

Mismatch penalty 4

F I S C L M H
Condition

La
te

nc
y

0.
0

0.
5

1.
0

1.
5

2.
0

Low Fan
High Fan
Model

Fig. 1. Latencies across target and foil conditions. Target conditions are facilitation, interference, suppres-

sion, and control. Foil conditions are low, mixed, and high.
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link strengths. As more stimuli (persons or places) are presented together (or within a

short temporal window), they interfere with each other’s associative strength, reducing

overall activation. This has the effect of lowering overall accuracy and increasing

response times. While prior explanations (Anderson & Reder, 1999; Schneider & Ander-

son, 2012) have presented good fits to human latency based solely on associative weights,

the present model learns both base-level activation (reflecting recency and frequency of

use) and associative weights throughout the entire experiment (including the testing

phase) and predicts the presence of fan effects in both latency and accuracy.

Many mathematical models (e.g., Alpaydin, 2014; Anderson & Reder, 1999; Sohn,

Anderson, Reder, & Goode, 2004) assume a fixed testing phase (where the model does

not continue to learn. An advantage of modeling the fan effect experiment while learning

throughout the experiment is that we are able to assess some of the assumptions made in

prior modeling efforts. Most interesting is that the assumption that base-level activation

would be similar between high-fan and low-fan stimuli was valid in aggregate, but it was

highly variable between conditions and throughout the different phases of the experiment

(see Table 2). This variability was due, in part, to the differences in stimulus presentation

frequency seen in the study phase (e.g., facilitation vs. interference, suppression, and con-

trol). Perhaps counterintuitively, high-fan targets generally have higher base-level activa-

tion than their low-fan equivalents due to the extra rehearsals they require to reach

criterion in the drop-out phase and their relatively increased error rates (due to lower

associative activation) in the testing phase.

A novel decision that we made was to encode foils. This was done to reflect the fact that

participants must encode feedback to which they have explicitly attended (Muzzio, Kentros,

& Kandel, 2009). Furthermore, it maintains consistency across conditions: Stimuli per-

ceived similarly on the display are also encoded similarly. Encoding foils causes retroactive

interference (i.e., reduced associative strength) for existing targets, as reflected in Table 2.

F I S C L M H
Condition

A
cc

ur
ac

y
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Low Fan
High Fan
Model

Fig. 2. Error rates across target and foil conditions. Target conditions are facilitation, interference, suppres-

sion, and control. Foil conditions are low, mixed, and high.
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In our model, associative activation was comparable between the high-frequency facilitation
condition and the low-frequency interference, suppression, and control conditions. Instead,
the difference in model performance was based on difference on the base-level activation of

recalled concepts. This difference in activation between conditions stands in contrast to the

prediction of the Anderson and Reder (1999) model, who assume that base-level activations

would be equivalent and that associative activation would vary between the facilitation and

other conditions due to differences in the frequency of perceiving facilitation stimuli in the

study phase. While both approaches attribute changes between conditions to the frequency

of perceiving stimuli, the difference is that our model’s maturation mechanism stabilizes tar-

gets’ link strength over the course of the experiment while the well-justified base-level acti-

vation (Anderson, 2007; Anderson et al., 2004) varies according to the recency and

frequency of concept perception and recall.

There are some aspects of our model that will be addressed in future work. We did not

attempt to model a strategy of speed-accuracy trade-offs reflecting the time-pressure-

based reward system of the original experiment. ACT-R does not have a mechanism to

distinguish recognition from recall: Recall is an all-or-nothing event. It was not obviously

possible to have a meta-awareness of stimulus familiarity buildup throughout the retrieval

process (i.e., a feeling of knowing; Reder & Ritter, 1992), something which could be

leveraged to induce speed-accuracy tradeoffs. This speed-accuracy trade-off may result in

less difference in response times between the high- and low-frequency conditions,

improving our fit to human data.

It is fair to argue that our model is substantially more complex than prior efforts, but

we argue that this complexity is necessary to understand how fan effects arise from

Table 2

Average base-level activation (Bi) and average associative strength per link (Si) per condition across drop-out

training and testing. Activations are used in Eq. 7 to determine accuracy and in Eq. 8 to determine response

time

Drop Test 1 Test 2 Test 3

Bi Si Bi Si Bi Si Bi Si

F2 0.44 1.33 0.54 0.97 0.73 0.91 0.86 0.82

F4 0.91 0.69 0.87 0.55 0.83 0.48 0.97 0.44

I2 0.40 1.34 0.25 0.99 0.59 0.94 0.59 0.86

I4 0.70 0.70 0.11 0.58 0.40 0.60 0.60 0.47

S2 0.32 10.35 0.11 1.03 0.67 1.00 0.34 0.95

S4 0.41 0.72 0.26 0.61 0.53 0.60 0.40 0.49

C2 0.47 1.40 0.08 1.17 0.25 1.05 0.35 0.98

C4 0.44 0.71 0.37 0.59 0.60 0.52 0.60 0.52

L2 N/A N/A 0.13 1.06 0.57 1.00 0.40 0.92

L4 N/A N/A �0.65 0.57 0.29 0.60 0.47 0.48

M2 N/A N/A �0.57 1.08 0.42 1.01 0.44 0.92

M4 N/A N/A �0.15 0.61 0.38 0.52 0.25 0.51

H2 N/A N/A 0.63 3.21 0.75 3.22 0.78 3.20

H4 N/A N/A 0.47 2.65 0.55 2.69 0.55 2.71
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learning. Our model predicts that differences in response time and accuracy between the

high-frequency facilitation condition and the low-frequency conditions are primarily due

to the frequency of use of the high-frequency concepts rather than their associative acti-

vation to other concepts. By having our model perform the study equivalently to human

participants and by having participants learn associative weights throughout the experi-

ment, we present a model that supports our theory of associative memory and explain

how associations are learned and adapt over time.
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Note

1. We did not bias the beginning recency and frequency of the concepts based on

prior word frequency (e.g., Ku�cera & Francis, 1967). We also assumed all concepts

were unassociated at the beginning of the experiment, although it is possible to

determine such relationships ahead of time (e.g., latent semantic analysis; Deer-

wester, Dumais, Furnas, Landauer, & Harshman, 1990). While these are measures,

we are interested in incorporating in future research, unless there were systematic

biases in the frequency of, or relationships between, stimuli across conditions, we

expect the impact to our results to be minor.
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